GSI name: Roy Zhao

1 Recursion Equations

1.1 Concepts

1. A **homogeneous** recursion does not include any extra constants (e.g. $a_n = a_{n-1} + a_{n-2}$) and a **nonhomogeneous** recursion contains one (e.g. $a_n = a_{n-1} + 4$). The **order** of a recursion equation is the "farthest" back the relation goes. For instance, the order of $a_n = a_{n-1} + a_{n-3}$ is 3 because we need the term 3 terms back (a_{n-3}) .

The general solution of a first order equation $a_n = a_{n-1} + d$ is $a_n = a_0 + nd$.

In order to solve a linear homogeneous we can replace the equation with its characteristic polynomial. For instance, the characteristic polynomial of $a_n = 2a_{n-1} + a_{n-2}$ is $\lambda^2 = 2\lambda + 1$. Then if $\lambda_1, \ldots, \lambda_k$ are roots of this polynomial, then the general form of the solution is $a_n = C_1\lambda_1^n + \cdots + C_k\lambda_k^n$.

The Δ operator takes in a series and spits out a new one. By definition, we have that $\Delta a_n = a_{n+1} - a_n$. This is done to change linear non-homogeneous equations into homogeneous ones.

1.2 Examples

- 2. Solve the recurrence relation $a_n = 5a_{n-1} 6a_{n-2}$ with $a_1 = 5, a_2 = 13$.
- 3. Solve the recurrence relation $a_n = 2a_{n-1} + 1$ with $a_0 = 0$.

1.3 Problems

- 4. True False We are not given an easy formula to plug in to solve linear non-homogeneous recursion equations.
- 5. True False If a_n, b_n are two solutions to a linear homogeneous equation, then $a_n + b_n$ is also an equation.
- 6. True False If a_n is a solution to a linear homogeneous equation, then ca_n is also a solution for any constant c.
- 7. True False If a_n, b_n are two solutions to a linear non-homogeneous equation, then $a_n + b_n$ is also an equation.
- 8. True False If a_n is a solution to a linear non-homogeneous equation, then ca_n is also a solution for any constant c.

- 9. Verify that $a_n = \binom{n}{5}$ is a solution to $a_n = \frac{n}{n-5}a_{n-1}$.
- 10. Solve the recurrence relation $a_n = 3a_{n-1} + 4a_{n-2}$ with $a_0 = 3$ and $a_1 = 2$.
- 11. Find A, B such that $a_n = An + B$ is a solution to the recurrence relation $2a_n = a_{n-1} + 2a_{n-2} + n$.

1.4 Extra Problems

- 12. Verify that $a_n = n^2$ is a solution to $a_n = a_{n-1} + 2n 1$.
- 13. Solve the recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ with $a_0 = 3$ and $a_1 = 3$.
- 14. Find A, B such that $a_n = An + B$ is a solution to the recurrence relation $3a_n = a_{n-1} + 3a_{n-2} + n + 5$.

2 Differential Equations

2.1 Concepts

15. The **order** of a differential equation is the highest derivative that appears in the equation. For instance, the equation $y''' + \sqrt{y'} = t^2 y$ is third order.

A problem of the form y' = f(t, y) and $y(0) = y_0$ is called an **initial value problem** (IVP). There is a theorem that tells us when a solution to this problem exists. It says that if f is continuous, then for every choice of y_0 , the solution **exists** in a time interval [0, T) for some $0 < T \le \infty$. But, the solution may not exist everywhere and it is not guaranteed to be unique.

If in addition f satisfies the **Lipschitz** condition (that $|f(t,y) - f(t,z)| \le C|y-z|$) for some constant C and all y, z), then the solution is **unique** and exists for all $t \ge 0$. For instance $f(y) = y^2$ does not satisfy the Lipschitz condition because there is no constant such that $|y^2 - 0^2| \le C|y - 0| = C|y|$ for all y. Effectively this is saying that f does not grow or shrink faster than a linear function.

2.2 Examples

16. Bacteria grows at a rate N' = 0.05N where time is measured in hours. If initially there were 1000 cells, how many cells will there be in 10 hours?

2.3 Problems

- 17. True False For an IVP, the function f may be continuous everywhere but still the solution does not exist everywhere.
- 18. True False We guaranteed that the IVP $y' = ty^2$, y(0) = 0 has a unique solution.
- 19. True False We guaranteed that the IVP $y' = t^2y$, y(0) = 0 has a unique solution.
- 20. Solve the IVP $y' = te^t$ with y(0) = 0.
- 21. Verify that $y = te^t + 1$ is a solution to y'' 2y' = 1 y.

2.4 Extra Problems

- 22. Solve the IVP $y' = \frac{1}{t \ln t}$ with y(e) = 0.
- 23. Verify that $y = 2e^{1/(2t)}$ is a solution to $2t^2y' + y = 0$.

3 True/False Review

- 24. True False To find p(B|A), it suffices to know just p(A|B) and how to apply Bayes' Theorem.
- 25. True False Among other things, the proof of Bayes' Theorem for finding p(B|A) depends on being able to split the probability p(A) as a sum probabilities $p(A \cap B)$ and $p(A \cap \overline{B})$, and then further rewrite these as products of certain other probabilities.
- 26. True False The extra shortcut formula $p(B|A) = \frac{1}{1 + \frac{p(A|\overline{B}) \cdot p(\overline{B})}{p(A|B) \cdot p(B)}}$ works in one particular case when the standard formula for p(B|A) in Bayes' Theorem fails.
- 27. True False If a winner in a bicycle race tests positive for steroids, and this test has a very high "True Positive" rate and hence a very low "False positive" rate, then we should take away the winning cup from the athlete because it is extremely likely that he/she has used steroids.
- 28. True False Error 1 in Hypothesis Testing (reject the null-hypothesis that the person is healthy when the person is actually healthy) is analogous to Testing positive for steroids (event T), yet not having used steroids (event \overline{S}); in other words, the significance α corresponds to $p(T \cap \overline{S})$.
- 29. True False Error 2 in Hypothesis Testing (keep the null-hypothesis that the person is healthy but the person is, in fact, sick) is analogous to Testing negative for steroids (event \overline{T}), yet having used steroids (event S); in other words, the power of a test $1-\beta$ corresponds to $1-p(\overline{T}\cap S)$.

30. True	False	To partition a set Ω into a disjoint union of subsets B_1, B_2, \ldots, B_n ,
		means that the intersection of these sets is empty; i.e., $B_1 \cap B_2 \cap \cdots \cap B_n =$
		\emptyset .

- 31. True False Two disjoint events could be independent, but two independent events can never be disjoint.
- 32. True False If a fair coin comes up Heads six times in a row, it is more likely that it will come up Tails than Heads on the 7th flip.
- 33. True False Contrary to how we may use the word "dependent" in everyday life; e.g., event A could be dependent on event B, yet event B may not be dependent on event A; in math "dependent" is a symmetric relation; i.e., A is dependent with B if and only B is dependent with A.
- 34. True False If A and B are independent events, their complements are also bound to be independent, and to prove this we need a general argument since an example is not sufficient here.
- 35. True False If A and B are independent events, \overline{A} and B may fail to be independent, but to prove this we need just one counterexample, not a general proof.
- 36. True False If any pair of events among $A_1, A_2, ..., A_n$ are independent, then all events are independent.
- 37. True False A random variable (RV) on a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$ that satisfies certain rules and is related to the probability function P.
- 38. True False A RV X could be the only source of data for an outcome space Ω and hence could be very useful in understanding better X 's domain.